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Abstract. The single-spin asymmetries for a longitudinally polarized lepton beam or a longitudinally po-
larized nucleon target in semi-inclusive deep-inelastic scattering are twist-3 observables. We study these
asymmetries in a simple diquark spectator model of the nucleon. Analogous to the case of transverse target
polarization, non-vanishing asymmetries are generated by gluon exchange between the struck quark and
the target system. It is pointed out that the coupling of the virtual photon to the diquark is needed in order
to preserve electromagnetic gauge invariance at the twist-3 level. The calculation indicates that previous
analyses of these observables are incomplete.

PACS. 13.60.Hb Total and inclusive cross-sections (including deep-inelastic processes) – 13.88.+e Polar-
ization in interactions and scattering

1 Introduction

The measurements of AUL (longitudinal target polariza-
tion) and ALU (longitudinal lepton beam polarization) by
the HERMES [1–3] and CLAS [4] Collaborations consti-
tute the first clear evidence of non-vanishing single-spin
asymmetries (SSA) in semi-inclusive deep-inelastic scat-
tering (SIDIS) off the nucleon. From a theoretical point of
view, SSA in hard processes are very interesting because
of their relation to time-reversal odd (T-odd) correlation
functions (parton distributions and fragmentation func-
tions).

Already for more than a decade the existence of T-odd
fragmentation functions has been considered to be estab-
lished [5]. In the meantime, explicit model calculations in-
cluding final-state interactions in the fragmentation pro-
cess have provided non-vanishing results for such func-
tions (see, e.g., refs. [6,7]). On the other hand, it has been
shown only recently that non-zero T-odd parton distribu-
tions are compatible with time-reversal invariance of the
strong interaction [8,9] (see also refs. [10–12] for related
work). In DIS, T-odd parton distributions arise due to
the exchange of longitudinally polarized gluons between
the struck quark and the target system. This rescatter-
ing effect is encoded in the gauge link appearing in the
definition of parton distributions. An alternative picture
according to which T-odd parton distributions can be gen-
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erated without rescattering of the struck quark [13] seems
to be ruled out [14].

In particular, due to the recent developments [8,9],
the T-odd and transverse-momentum–dependent (k⊥-
dependent) functions f⊥1T (Sivers function, describing the
distribution of unpolarized quarks in a transversely po-
larized target) [15] and h⊥1 (distribution of transversely
polarized quarks in an unpolarized target) [16] may well
exist. From a practical point of view both distributions
can be considered as twist-2 functions, since they appear
in observables at leading order of a 1/Q-expansion, where
Q denotes the large scale of the hard process. For instance,
f⊥1T enters the leading twist SSA AUT in SIDIS [16].

Despite the recent progress in understanding the na-
ture of T-odd effects, a complete formalism (including
subleading T-odd parton distributions) of T-odd twist-
3 observables is still missing even at tree level. So far,
such effects have only been treated on the fragmenta-
tion side [17,18]. This point may also be quite impor-
tant for the description of the twist-3 asymmetries AUL

and ALU in SIDIS. With the exception of refs. [19,20],
all present analyses/calculations of these observables are
based on [18], i.e., they include only T-odd fragmenta-
tion functions (see, e.g., refs. [21–26]). In this scenario one
finds schematically ALU ∝ eH⊥

1 and AUL ∝ hLH
⊥
1 , with

the twist-3 T-even parton distributions e and hL, and the
twist-2 T-odd Collins fragmentation function H⊥

1 [5]1.

1 In our calculation for AUL the target is polarized along the
direction of its momentum (and the direction of the virtual
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Fig. 1. Tree level diagrams of the process in (1). In order to preserve gauge invariance both diagrams have to be considered.

Analogous to the treatment of AUT presented in
ref. [8], we compute ALU and AUL in the framework of
a simple diquark spectator model of the nucleon, in or-
der to investigate whether T-odd parton distributions may
be relevant in these cases. The rescattering of the struck
quark, which serves as the potential source of T-odd ef-
fects, is modelled by the exchange of an Abelian gauge bo-
son. Such a study has already been performed in ref. [27].
However, in [27] only ALU has been computed explicitly.
Moreover, the calculation of [27] is not gauge invariant.
To preserve electromagnetic-current conservation also the
coupling of the virtual photon to the diquark has to be
included.

Both ALU and AUL turn out to be non-zero indicating
that, in a factorized picture, T-odd distributions have to
be taken into account. A first step in this direction has
been made in [19], where it has been demonstrated that
the T-odd distribution h⊥1 appears in the description of
ALU through a term h⊥1 E, where E is a twist-3 fragmenta-
tion function. As will be discussed below, our calculation
of ALU , however, cannot be identified with such a term
suggesting that the formula of [19] for the beam SSA is
not yet complete.

2 Tree diagrams

In order to study SIDIS off a spin- 1
2 particle (for definite-

ness we think of a proton) in the framework of a spectator
model we consider the process (compare also ref. [8])

γ∗(q) + p(p, λ)→ q(p1, λ
′) + s(p2) . (1)

In full SIDIS, both the quark and the spectator in the
final state fragment into hadrons, where we are interested
in the situation that one of the hadrons from the quark
fragmentation is detected at low transverse momentum.
However, for the study of possible T-odd effects related
with parton distributions it is not necessary to include
the fragmentation process in the calculation. We use the
model of [8] with a scalar diquark spectator s. In this
model the proton has no electromagnetic charge, and a
charge e1 is assigned to the quark. The interaction between

photon). In experiments for the longitudinal target asymmetry,
however, the polarization is along the direction of the incoming
lepton. Both situations differ by a kinematical twist-3 term
which is given by AUT .

the proton, the quark and the spectator is described by a
scalar vertex with the coupling constant g.

We treat the process (1) in the Breit frame of the vir-
tual photon. The proton has a large plus-momentum Q/x,
where x = xBj + O(1/Q2). The quark carries the large
minus-momentum p−1 ≈ q− and a soft transverse momen-

tum ~∆⊥. These requirements specify the kinematics:

q =
(

−Q, Q, ~0⊥

)

, p =

(

Q

x
,
xM2

Q
, ~0⊥

)

,

p1 =

( ~∆2
⊥

Q
, Q, ~∆⊥

)

,

p2 =

(

Q(1− x)

x
,
x( ~∆2

⊥ +m2
s)

Q(1− x)
, − ~∆⊥

)

. (2)

The expressions for q and p are exact, while for p1 and
p2 just the leading terms have been listed. In particular,
sometimes the 1/Q2 corrections of p−1 and p+

2 are needed
which can be readily obtained from 4-momentum conser-
vation. To simplify the calculation we consider massless
quarks.

The tree level diagrams of the process (1) are shown
in fig. 1. Their currents, depending on the helicities of the
proton and the quark, read

Jµ(a,0)(λ, λ
′) =

e1g
1

(p1 − q)2
ū(p1, λ

′) γµ (p1/ − q/ )u(p, λ) , (3)

Jµ(b,0)(λ, λ
′) =

−e1g
1

(p2 − q)2 −m2
s

(2pµ2 − qµ) ū(p1, λ
′)u(p, λ) . (4)

We have defined the current by means of the scattering
amplitude according to T = εµJ

µ, with ε denoting the po-
larization vector of the virtual photon. It is easy to check
that current conservation holds for the sum of the two
diagrams, i.e.,

qµ

(

Jµ(a,0) + Jµ(b,0)

)

= 0 . (5)

As long as one is just interested in leading twist ob-
servables, it is sufficient to consider diagram (a, 0). This
is for instance the case in the calculation of the transverse
SSA AUT in ref. [8]. The specific kinematics in eq. (2) is
the reason for the suppression of diagram (b, 0) relative
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Jµ(a,1)(λ, λ
′) = i(e1)

3g

∫

d4k

(2π)4
ū(p1, λ

′) (p1/ + 2p2/ − k/ ) k/ γµ (k/ − q/ )u(p, λ)

[k2 + iε][(k − q)2 + iε][(p+ q − k)2 −m2
s + iε][(k − p1)2 − µ2 + iε]

, (13)

Jµ(b,1)(λ, λ
′) = −i(e1)

3g

∫

d4k

(2π)4
ū(p1, λ

′) (p1/ + 2p2/ − k/ ) k/ (2pµ + qµ − 2kµ)u(p, λ)

[k2 + iε][(p− k)2 −m2
s + iε][(p+ q − k)2 −m2

s + iε][(k − p1)2 − µ2 + iε]
(14)

to (a, 0). The propagator of the diquark in (b, 0) behaves
like 1/Q2, while there is no large momentum flow through
the quark propagator in (a, 0). Nevertheless, as we discuss
in the following, for subleading twist observables diagram
(b, 0) can no longer be neglected.

We compute the various components of the currents
using the lightfront helicity spinors of [28]. For Jµ(a,0) one

obtains

J1
(a,0)(λ, λ

′) = −e1g
1− x
√
x | ~∆⊥|

Q

~∆2
⊥ + m̃2

×
[

Mx
(

∆1 − iλ∆2
)

δλ,λ′ − λ
(

∆1 + iλ∆2
)2

δλ,−λ′

]

, (6)

J2
(a,0)(λ, λ

′) = −e1g
1− x
√
x | ~∆⊥|

Q

~∆2
⊥ + m̃2

×
[

Mx
(

iλ∆1+∆2
)

δλ,λ′ − i
(

− iλ∆1+∆2
)2

δλ,−λ′

]

, (7)

J+
(a,0)(λ, λ

′) = −2e1g
1− x√

x

| ~∆⊥|
~∆2
⊥ + m̃2

×
[

Mxδλ,λ′ −
(

λ∆1 + i∆2
)

δλ,−λ′

]

, (8)

J−(a,0)(λ, λ
′) = −2e1g

1− x√
x

| ~∆⊥|
~∆2
⊥ + m̃2

×
[

Mxδλ,λ′ − xM2

~∆2
⊥

(

1−
~∆2
⊥ +m2

s

M2(1− x)

)

×
(

λ∆1 + i∆2
)

δλ,−λ′

]

, (9)

with m̃2 = x(1− x)

(

−M2 +
m2
s

1− x

)

.

One observes here the well-known result that for DIS off
a spin- 12 particle the transverse current is dominating in
the Breit frame. For the second tree graph we find

J+
(b,0)(λ, λ

′) = −e1g
2− x
√
x | ~∆⊥|

(

λ∆1 + i∆2
)

δλ,−λ′ , (10)

J−(b,0)(λ, λ
′) = e1g

√
x

| ~∆⊥|

(

λ∆1 + i∆2
)

δλ,−λ′ . (11)

The transverse components J i(b,0) are proportional to

1/Q and, hence, indeed are suppressed by a factor 1/Q2

compared to J i(a,0) as expected. Therefore, these terms are

not relevant for the discussion of twist-3 observables. In

contrast, the plus and the minus components for both dia-
grams are of the same order. In this case, the suppression
of (b, 0) caused by the propagator of the diquark is com-
pensated by a factor Q at the photon-diquark vertex and
the fact that ū(p1, λ

′)u(p, λ) ∝ Q. Even though diagram
(b, 0) is not compatible with the parton model, since large
momentum transfers at the proton-quark-diquark vertex
are allowed, a consistent calculation of twist-3 observables
in the spectator model must contain this contribution. We
note that our results obey the gauge invariance constraint

J+
(a,0) + J+

(b,0) = J−(a,0) + J−(b,0) . (12)

Including by hand a formfactor at the proton-quark-
diquark vertex in order to suppress large momentum
transfers destroys the gauge invariance.

3 One-loop diagrams

To obtain non-zero SSA in a spectator model one has to go
beyond the tree level approximation and take the rescat-
tering of the quark into account. For our purpose it is suf-
ficient to model this effect by one-photon exchange. Since
the imaginary part of the one-loop amplitude is needed for
the computation of SSA, just the two diagrams in fig. 2
have to be considered. Self-energy and vertex correction
diagrams are relevant for the real part of the amplitude,
but cannot acquire an imaginary part, because we are
dealing with either on-shell or even space-like (internal)
lines. In order to avoid infrared singularities at interme-
diate steps of the calculation we assign a mass µ to the
photon. The final results for ALU and AUL must be in-
frared finite which serves as a non-trivial check of the cal-
culation. The currents of the diagrams in fig. 2 are given
by

see eqs. (13) and (14) above.

Applying Cutkosky rules to calculate the imaginary
part, one can verify the gauge invariance condition

qµ

(

Im Jµ(a,1) + Im Jµ(b,1)

)

= 0 . (15)

It is obvious that the full current (including the real part)
for the sum of both diagrams is not gauge invariant.

The calculation of the imaginary parts has been per-
formed similar to the study of T-odd fragmentation in
ref. [29]. We refrain from giving any details and just quote
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Fig. 2. One-loop diagrams for the imaginary part of the process in (1). In each diagram the possible on-shell intermediate
state is indicated by a thin dotted line. The interaction between the quark and the spectator is modelled by the exchange of an
Abelian gauge boson.

the final results. For diagram (a, 1) we find

Im J1
(a,1)(λ, λ

′) = − (e1)
3g

8π

1− x
√
x | ~∆⊥|

Q

[

lnL√
Λ
Mx

×
(

∆1 − iλ∆2
)

δλ,λ′ − 1

2 ~∆2
⊥

(

(

~∆2
⊥ − m̃2 + µ2

) lnL√
Λ

+ ln
m̃2

µ2

)

λ
(

∆1 + iλ∆2
)2

δλ,−λ′

]

, (16)

Im J2
(a,1)(λ, λ

′) = − (e1)
3g

8π

1− x
√
x | ~∆⊥|

Q

[

lnL√
Λ
Mx

×
(

iλ∆1 +∆2
)

δλ,λ′ − 1

2 ~∆2
⊥

(

(

~∆2
⊥ − m̃2 + µ2

) lnL√
Λ

+ ln
m̃2

µ2

)

i
(

− iλ∆1 +∆2
)2

δλ,−λ′

]

, (17)

Im J+
(a,1)(λ, λ

′) = − (e1)
3g

8π

1− x
√
x | ~∆⊥|

[

Mx

×
(

(

~∆2
⊥ − m̃2 + µ2

) lnL√
Λ

+ ln
m̃2

µ2

)

δλ,λ′

+2

(

m̃2 lnL√
Λ
− ln

Q2(1− x)

µ2x
+ 1

)

(

λ∆1 + i∆2
)

δλ,−λ′

]

,

(18)

with L =
~∆2
⊥ + m̃2 + µ2 +

√
Λ

~∆2
⊥ + m̃2 + µ2 −

√
Λ
,

Λ =
(

~∆2
⊥ + m̃2 − µ2

)2

+ 4 ~∆2
⊥µ

2 .

The plus-component of diagram (b, 1) is given by

Im J+
(b,1)(λ, λ

′) = − (e1)
3g

8π

1
√
x | ~∆⊥|

×
(

(2−x) ln Q
2(1−x)
µ2x

− 2(1−x)
)

(

λ∆1 + i∆2
)

δλ,−λ′ .

(19)

For the one-loop calculation we make use of gauge invari-
ance to eliminate the minus component of the current.
The Q behaviour of the one-loop expressions corresponds

to the one of the tree graphs. Note also that the plus com-
ponent of the currents for both diagrams contains a lnQ2-
term, which is not compatible with the parton model.
From our results for the transverse currents in eqs. (16),
(17) we were able to reproduce the transverse target SSA
computed in ref. [8] (up to an overall sign).

4 Spin asymmetries

Eventually, we proceed to the calculation of ALU and AUL.
The full cross-section in DIS (including the leptons) in the
one-photon exchange approximation can be expressed in
the standard form

σ ∝ LµνW
µν , (20)

with the lepton tensor

Lµν = 2
(

lµl′ν + lν l′µ − Q2

2
gµν + iλeε

µνρσqρlσ

)

. (21)

In eq. (21), the 4-momentum of the incoming (outgoing)
lepton is denoted by l (l′), and Q2 = −(l−l′)2. The hadron
tensor is obtained from the above currents according to

Wµν =
(

Jµ
)†

Jν . (22)

Now, we exploit gauge invariance of both the lepton and
hadron tensor, take q from eq. (2), choose the lepton mo-
menta to be in the xz-plane, and ignore a contribution of
W++ which for our calculation is at least suppressed by
a factor 1/Q2 relative to the leading term in the cross-
section. This allows us to write the cross-section as

σ ∝ 4Q2

y2

[

− (2− y)
√

1− yW+1
S +

(

1− y +
y2

4

)

W 11
S

+
y2

4
W 22

S + iλe

(

y
√

1− yW+2
A − y

(

1− y

2

)

W 12
A

)]

,

(23)

whereWµν
S = (Wµν+W νµ)/2 andWµν

A = (Wµν−W νµ)/2
represent the symmetric and the antisymmetric part of
the hadronic tensor, respectively. We also used the stan-
dard definition y = p · q/p · l. The first line in eq. (23)
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is relevant for the target spin asymmetry, and the second
one for the beam asymmetry. Actually, it turns out that
the purely transverse components of the hadronic tensor
(W 11

S , W 22
S , W 12

A ) do not contribute to the spin asymme-
tries at twist-3 level.

In order to specify the asymmetries, we define

W 11
UU =

1

2

∑

λ,λ′

(

J1(λ, λ′)
)†

J1(λ, λ′) , (24)

W+2
A,LU =

1

4

∑

λ,λ′

[

(

J+(λ, λ′)
)†

J2(λ, λ′)

−
(

J2(λ, λ′)
)†

J+(λ, λ′)

]

, (25)

W+1
S,UL =

1

4

∑

λ′

[(

(

J+(↑, λ′)
)†

J1(↑, λ′)

−
(

J+(↓, λ′)
)†

J1(↓, λ′)
)

+

(

(

J1(↑, λ′)
)†

J+(↑, λ′)

−
(

J1(↓, λ′)
)†

J+(↓, λ′)
)]

, (26)

where polarization “↑” in (26) means polarization along
the positive z-axis, i.e., along the direction of the tar-
get momentum. The element W 11

UU is given by the tree
level result for diagram (a, 0) in eq. (6). Non-zero contri-
butions to W+2

A,LU and W+1
S,UL are generated by interfer-

ence of the tree level amplitude with the imaginary part
of the one-loop amplitude. While the transverse currents
in (25) and (26) are obtained from diagrams (a, 0) and
(a, 1), all four diagrams contribute to the plus component
of the current. The final results for the asymmetries read2

ALU =
iW+2

A,LU

W 11
UU

=
(e1)

2

4π

~∆2
⊥ + m̃2

M2x2 + ~∆2
⊥

∆2

Q

×
[

1

~∆2
⊥

(

−M2x2 − m̃2 2− x

2(1− x)

)

ln
~∆2
⊥ + m̃2

m̃2

− x

2(1− x)
ln

Q2(1− x)

( ~∆2
⊥ + m̃2)x

]

, (27)

AUL =
W+1

S,UL

W 11
UU

=
(e1)

2

4π

~∆2
⊥ + m̃2

M2x2 + ~∆2
⊥

∆2

Q

×
[

1

~∆2
⊥

(

M2x2 − m̃2 2− x

2(1− x)

)

ln
~∆2
⊥ + m̃2

m̃2

− x

2(1− x)
ln

Q2(1− x)

( ~∆2
⊥ + m̃2)x

]

. (28)

2 As a reference we mention that the transverse target spin
asymmetry of [8] is given by AUT = W 11

UT /W
11
UU , with W 11

UT =
W 11
S,UT defined analogous to eq. (26).

We would like to add some remarks:

– An explicit non-zero result for ALU in the framework of
the diquark spectator model has already been obtained
in ref. [27]. Our calculation shows that both ALU and
AUL remain finite once all diagrams required by elec-
tromagnetic gauge invariance are taken into consider-
ation.

– We believe that the effect which generates ALU in our
calculation is not related to a term proportional to
h⊥1 E discussed in ref. [19]. While h⊥1 is chirally odd,
we have summed over the polarizations of the outgoing
quark.

– Since the asymmetries are proportional to ∆2 =

| ~∆⊥| sinφq we expect in full SIDIS an effect propor-
tional to sinφh, where φh is the azimuthal angle of the
produced hadron. The mechanisms which have been
discussed so far in the literature in connection with
ALU and AUL [17–19] show the same sinφh behaviour.
In addition, the different contributions to the asymme-
tries have the same y-dependence (y

√
1− y for ALU

and (2− y)
√
1− y for AUL, see eq. (23)).

– In the final results for the asymmetries we have per-
formed the limit µ→ 0 without encountering a diver-
gence. We agree with the observation made in ref. [27],
that the contribution from diagrams (a, 0) and (a, 1)
to ALU is separately infrared finite. This behaviour,
which holds for AUL as well, seems to be accidental.

5 Summary and conclusions

In summary, we have calculated the twist-3 single-spin
asymmetries ALU and AUL for semi-inclusive DIS off a
nucleon target in the framework of a simple diquark spec-
tator model. Our study completes the previous work in
ref. [27], where only ALU has been computed explicitly.
Moreover, the treatment in [27] is lacking electromagnetic
gauge invariance.

Both ALU and AUL turn out to be non-zero. Although
the spectator model calculation contains contributions
which are not compatible with the parton model, the non-
vanishing results indicate that T-odd distributions have
to be included in a factorized description of the asymme-
tries. So far this has only been done partly in the liter-
ature. In fact, we have argued that apparently none of
the present analyses/calculations of ALU and AUL within
the parton model is complete. Mainly for two reasons we
feel confident to make such a speculation: first, within our
calculation non-zero asymmetries arise already from the
diagram (a, 1), whose kinematics is compatible with the
parton model. Second, there is no reason why the asym-
metries should not contain higher-order T-odd distribu-
tion functions. The status of the parton model formulae
for ALU and AUL needs to be clarified before any definite
conclusion can be extracted from the data.

Note added: After this work has been completed, a revised
parton model analysis for ALU and AUL appeared [30].
The analysis confirms our suspicion that both asymme-
tries should contain an additional term with a twist-3
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T-odd distribution function, which have not been taken
into account in the literature before.

We are grateful to J.C. Collins and N. Kivel for discussions.
The work has been partly supported by the Sofia Kovalevskaya
Programme of the Alexander von Humboldt Foundation, the
DFG and the COSY-Juelich project.
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